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Zeolites have been extensively studied over many years as a
result of their use in industrial applications for catalysis, ion
exchange, adsorption, and separation.1,2 The synthesis of new
frameworks with large pores and low framework densities (FDs)
is always a great challenge. Because of the correlation between
FD and the smallest rings in tetrahedral networks,3 it has been
suggested that small rings, i.e., 3- and 4-rings, are essential for the
formation of a framework with low FD.2-4 Zeolite frameworks
with 4-rings are common, but those with 3-rings are relatively rare
because of the inner tension arising from this small circuit.5 Silicon
seldom forms 3-rings with oxygen atoms alone because of the short
Si-O bond length (∼1.61 Å) and large Si-O-Si angle (∼145°);
ZSM-18(MEI) is the only known aluminosilicate zeolite containing
3-rings.6 On the other hand, incorporation of low-valent cations
such as Be2+, Zn2+, and even Li+ in one of the tetrahedra in a
3-ring can provide the flexibility necessary to stabilize the 3-rings
in the zeolite frameworks,7-9 which indeed led to the discovery of
the frameworks with very low FD, such as OBW (13.1 T/1000
Å3) and OSO (13.4 T/1000 Å3).5,9 OSO is an extreme case in which
3-rings are the minimum rings and these 3-rings are directly corner-
linked by spiro-5 units to form a chiral framework with large (14-
ring) pores. Recently, germanates have received particular attention
because the longer Ge-O bond length (∼1.74 Å) and smaller
Ge-O-Ge angle (∼130°) may also favor the smaller rings.10

However, 4-rings and/or double-4-rings (D4Rs) dominate in newly
found germanate zeolites;11,12 only a few germanates, such as
UCSB-9(SBN), UCSB-11, SU-46(SBN), SU-16(SOS), FJ-17(SOS),
and ITQ-33, contain 3-rings,13 and none of them contains the
spiro-5 unit, which means that no direct corner linkage of 3-rings
was identified in germanate zeolites. Here we report a new
aluminogermanate, Ge7Al2O18(C5H14N)2 (PKU-9). It contains a
novel zeolite framework composed of CGS layers14 and spiro-5
units and has a low framework density. To the best of our
knowledge, this is the first aluminogermanate that contains spiro-5
units.

The reaction of a mixture of GeO2, freshly prepared Al(OH)3,
trimethylethylammonium hydroxide [a structure directing agent
(SDA)], and H2O under hydrothermal conditions provided PKU-9
as colorless crystals with rhombic-like morphology. The structure
of PKU-9, determined by single-crystal X-ray diffraction, is
orthorhombic15 and consists of five unique T (T ) Ge, Al) positions
in an asymmetric unit, all of which are tetrahedrally coordinated
by oxygen. The structure refinement indicated that Al and Ge are
randomly distributed in the five T sites with refined occupancies
ranging from 0.22 to 0.28 for Al and 0.78 to 0.72 for Ge. According
to elemental analysis [see the Supporting Information (SI)] and the
requirement of charge balance, the occupancies of Al and Ge were
fixed at 0.22 and 0.78 for all T positions in the final refinement,
giving rise to the formula Ge7Al2O18(C5H14N)2. The 27Al NMR

spectrum of PKU-9 (see the SI) showed a single peak at 56.7 ppm,
typical of tetrahedral aluminum.

The framework of PKU-9 can be described by wrinkled layers
that are interconnected through spiro-5 units (Figure 1a). This
wrinkled layer is in fact the fundamental layer of CGS, although
the CGS framework was described in a different way in the
literature.14 Here we assign it as the CGS layer. The CGS layer is
constructed by connection of 4-ring zigzag ladders (Figure 1b).
These zigzag ladders, formed by the linkage of 4-rings via edge
sharing in an alternating trans and cis manner, are all parallel,
running along the [010] direction. Each ladder is also connected to
two neighbors via 4-rings, forming the CGS layer with 8-ring pores
in the [101] and [101j] directions. The 8-rings are rather regular
(Figure 2a), with an opening size of ∼3.5 Å × 3.5 Å. The CGS
layer contains two kinds of T atoms: one is 3-noded (T1 and T2,
shown in red in Figure 1b) and the other 4-noded (T3 and T4, in
blue). The 3-noded T atoms are in neighboring positions, so they
can connect to T5 atoms to form 3-rings. Further connection of T5
atoms to another neighboring CGS layer results in the spiro-5 units
and the framework of PKU-9.

The connection of the CGS layers by spiro-5 units creates three
10-ring channels perpendicular to the [001] direction. The 10-ring
channels along the [010] direction, which can be clearly seen in

Figure 1. (a) Projection of the PKU-9 structure along the [010] direction.
The T5 tetrahedra are shown in yellow, and the spiro-5 unit is emphasized
by a circle; the tetrahedra in the CGS layers are shown in red and blue. (b)
CGS layer, with the two 4-ring zigzag ladders shaded in green and cyan
and the 4- and 3-noded T atoms shown in blue and red, respectively.

Figure 2. Views of (a) an 8-ring channel along [001], (b) a 10-ring channel
along [010], and (c) a 10-ring channel along [110] or [11j0]. The size of
each opening (dimensions in Å) is shown.
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Figure 1a, are elliptical with an effective size of ∼6.2 Å × 4.3 Å
(Figure 2b). The other two 10-ring channels, which run along the
[110] and [11j0] directions but are otherwise identical, have effective
opening sizes of ∼7.0 Å × 4.6 Å (Figure 2c). The three 10-ring
channels intersect, and since they are all perpendicular to the 8-ring
channels along [001], they also intersect with the 8-ring channels,
forming a three-dimensional open framework.

It is interesting to compare the structure frameworks of PKU-9
and CGS. The component layers in both structures are identical,
and thus, the a and b values of PKU-9 are in fact very close to a
and c values of CGS. The only difference between the two
structures is the interconnection of the layers. In the CGS
framework, the adjacent layers are related by a mirror plane and
are directly linked by the 3-noded T atoms in the CGS layer, as
shown in Figure 3a. Such linkage creates 10-ring channels along
the a direction in the structure. In PKU-9, the neighboring layers
are related by an n-glide plane perpendicular to the c direction and
interconnected by additional T5 atoms via spiro-5 units (Figure
3b). As a consequence, the distance between adjacent CGS layers
in PKU-9 is ∼3 Å larger than that in CGS.

In each spiro-5 unit, the two corner-shared 3-rings are almost
perpendicularly arranged. Such a unit is not common in tetrahedral
frameworks because of the inner tension. In PKU-9, the T-O
distances fall into the range 1.709-1.753 Å, which is typical of
Al-O or Ge-O bonds. The T-O-T angles, however, fall into
two distinct groups. Within the CGS layer, the T-O-T angles
are in the range 132.9-147.5°, whereas in the spiro-5 units, the
T-O-T angles are significantly smaller (123.8-128.9°). It should
be noted that in the other germanate zeolite frameworks containing
3-rings, the 3-rings are either not directly linked [as in UCSB-
9(SBN)] or linked by sharing an edge [as in SU-16(SOS)]. PKU-9
is the first example of an aluminogermanate that contains spiro-5
units.

The distribution of small rings (4- and 3-rings) and their
correlation with the low FD of PKU-9 is also remarkable. The
4-noded T atoms in the CGS layer (T3 and T4) are surrounded by
three 4-rings and the 3-noded atoms (T1 and T2) by two 4-rings
and one 3-ring, while T5 in the spiro-5 unit is surrounded only by
two 3-rings. The average size of the smallest ring is 3.4, which
may be responsible for the low FD of 12.6 T/1000 Å3. In view of
the compositional effect, an FDSi of 13.5 T/1000 Å3 is estimated
from the ratio dGe-O/dSi-O ) 1.07.

The SDA cations are located in the 10-ring channels in the
structure (see the SI), as confirmed by 13C magic-angle spinning
NMR, elemental analysis, and structure refinement. PKU-9 loses
∼18.7% of its weight between 310 and 880 °C, consistent with

the decomposition of the SDA (calcd 18.7 wt %). The framework
collapses at ∼400 °C, when the decomposition of the SDA occurs.

In summary, PKU-9 is a novel aluminogermanate with a
remarkable new zeolite framework. The framework is constructed
from CGS layers and spiro-5 units, providing an alternative view
of using known zeolite layers to design and synthesize topologically
new zeolites.
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Figure 3. Comparison of the frameworks of (a) CGS and (b) PKU-9, in
which the CGS layers are shown in red and green. In CGS, the layers are
directly connected through 3-noded T atoms, while in PKU-9, they are
interconnected by spiro-5 units.
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